Home     Contact     Projects     Experiments     Circuits     Theory     BLOG     PIC Tutorials     Time for Science     RSS     Terms of services     Privacy policy  
   
 Home      Projects     Experiments     Circuits     Theory     BLOG     PIC Tutorials     Time for Science   


<< Back to INDEX

World's Tiniest Plasma Transistor [Innovation]
posted March 21 2014 4:03.11 by spic0m




The pink glow you see above is coming from the world's smallest plasma transistor, an unfathomably miniscule device 100 times smaller than the width of a human hair. It's not just tiny, it's tough, and theoretically able to withstand brutal environments. And it could massively change consumer electronics.

Fabricated by Professor Massood Tabib-Azar and doctoral student Pradeep Pai at the University of Utah, this honey-I-shrunk-the-transistor is a full 500 times smaller than current state of the art microplasma devices. Transistors are the nuts and bolts of electronic devices, controlling how electricity flows in the computer chips that power every smart device you've ever laid hands on.

Silicon transistors are the industry standard, but they start to fall apart at temperatures over 550 degrees Fahrenheit. Plasma-based transistors use charged gases rather than physical circuits to conduct electricity. Current plasma transistors are used in medical instruments, light sources, and other high-temperature environments, but they're energy hogs, requiring more than 300 volts of juice 14nearly three times what you get from your wall outlet.

By comparison, the University of Utah team's super-tiny transistor only needs one-sixth the voltage of larger plasma transistors, and it's capable of surviving temps up to nearly 1,500 degrees Fahrenheit. And did we mention it's hideously small?

Such a tiny transistor has huge implications. Tabib-Azar predicts they could allow engineers to pack an entire X-ray imaging setup into a smartphone, letting soldiers and medical technicians perform medical imaging right in the field. The tiny transistors could also be used to sense chemicals in the air. Or to make pretty much any transistor-based device you can think of monumentally smaller.

And that high-heat capability means these little guys would shrug off the temperatures generated in a nuclear reactor. "This transistor has the potential to start a new class of electronic devices that are happy to work in a nuclear environment," Tabib-Azar says. "These plasma-based electronics can be used to control and guide robots to conduct tasks inside the nuclear reactor, [or] control nuclear reactors if something goes wrong, and also could work in the event of nuclear attack."

[Link: gizmodo]
 
Share



You might also like...


Nobel Prize for the Next Gen of White LED Lamps [News]

LabMaster 10-100Zi, World's first 100GHz Real Time Oscilloscope [News]

We are close to make a real elixir of youth [Biology]

Intro to energy harvesting chips [Electronics]

Google reCAPTCH goes away, noCAPTCHA on the scene

This Floating Feelable Touchscreen is the HID that I want right now [Tech]

World first: Nanobots traveled inside a living mouse to deliver medicine

Amazing new touchscreen interface! [Technology]


<< Back to INDEX



Comments

  Name

  Email (shall not be published)

  Website

Notify me of new posts via email


Write your comments below:
BEFORE you post a comment:You are welcome to comment for corrections and suggestions on this page. But if you have questions please use the forum instead to post it. Thank you.


      

No comment yet...

Be the first to comment on this page!












 Contact     Forum     Projects     Experiments     Circuits     Theory     BLOG     PIC Tutorials     Time for Science     RSS   

Site design: Giorgos Lazaridis
© Copyright 2008
Please read the Terms of services and the Privacy policy